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Mounding instability and incoherent surface kinetics
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Mounding instability in a conserved growth from vapor is analyzed within the framework of adatom kinetics
on the growing surface. The analysis shows that depending on the local structure of the surface, kinetics of
adatoms may vary, leading to disjoint regions in the sense of a continuum description. This is manifested
particularly under the conditions of instability. Mounds grow on these disjoint regions and their lateral growth
is governed by the flux of adatoms hopping across the steps in the downward direction. Asymptotically In
dependence is expected in|{1) dimensions. Simulation results confirm the prediction. Growth if {2
dimensions is also discussed.
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Mounding instability was experimentally observed andof these regions show that these regions offer different
proposed by Johnsaet al.[1] during the growth of GaAs on growth equations over time scales much smaller thgp,
(001) GaAs substrate. Initially, activation difference the time for 1 ML deposition.
[Schwoebel-Ehrlic(SE) barrier] [2] between adatoms hop- We consider growth on a one-dimensional substrate. Fig-
ping on the plane and the one crossing the step edge wake 1 shows the stepped region under consideration. Growth
considered responsibf&]. Later it was shown that edge dif- Proceeds through randomly falling adatoms on the surface,
fusion can also lead to similar effecfd]. The necessary Which relax by diffusing on the stepped terraces. Adatoms
condition for this instability is to have curreqt, uphill on  With zero nearest neighbofsn) are mobile while those with

the tilted substratd5]. One of the issues related to the MOre than zero nn will have negligible mobility. Further,

growth of mounds has been the temporal dependence of tiflesorption and dissociation from the steps is also negligible

mound growth. Based on various forms of continuum equa?s:[ I%V;;%T;pg?m;g‘ fgrnn?zlrl ﬂlﬁ(:o?s\?\,?rl]eg %g’t\i'(v)t: iiot?]cgt;g?; It
tions the lateral growth is expected to have a time depen- P y 9 q

- ah(x,t)=V-j(x,t) + F, whereF is incident flux,h(x,t) is
dence~t°, wheres takes values from 0.0 to 1/6]. Simi- v . . . i i
larly, the width of the interface is predicted to follow the height function ang(x.) is particle current. An uphill cur

power lawt with 3 vanying from 113 onwardol, All e a1 PECALES etabity whle the dortil curent
simulations that do not allow step dissociation invariablyl_et | be the average length traveled by an adatom before
find that, for uphillj;, steepening of mound sides occurs getiing attached to another adatom or step. The density of
after some time, depending upon the strength ofjtheThe  gteps can be expressed as/(1+|m|), wheremis the local
steepening sides finally form sharp ridges in the interfacegiope. LetP, and Py be the relative probabilities for hop-
The time when it jUSt begins is referred to as the onset Obing across the siteA andB in F|g 1. By Considering cur-
instability. Most of the theoretical treatments and simulationsrent due to the downward hops and that due to the in-plane
do not extend to the region of instability. However, suchhops separately, one can show that the resultant nonequilib-
instability is the asymptotic behavior under uphill In the  rium current is given by9]

growth equation approach, presence of these ridges is con-

sidered as singularities and it was proposed that a nonlocal .

equation may reconcile the presence of ridges with con- — n[m|F(Pg—Pa) )
tinuum descriptiof 7]. The predictions of growth equations S 2(1+|m|)(|;1+|m|a‘1)’

[6] are based on the assumption that the underlying con-

served growth equation, describing nonequilibrium growth,

is valid over the entire substrate. In the following we showwheren denotes positive direction. The presence of * in

that for growth with uphill current, discontinuities appear onthe denominator accounts for the nucleation effect on larger
the substrate as a consequence of different kinetics in diffeterraces. In this expression, the local terrace widthl gsl(

ent regions, leading to different growth equations there. It isy 3=1|m|) ~1. However, due to the relative velocity between

shown that the power law dependence is possible only fofwo adjacent terraces, the local terrace width changes. The
downhill or zero tilt dependent current. Thus above predic-

tions[6] considered at zero tilt dependent current, but not for v’

an uphill current. We argue this by establishing a correspon- <
dence between different kinetic processes on the interface V<A B
and the terms in a growth equation. We consider a stepped | ‘
region, as in Fig. 1, base region, as the adjoining bottom of

two stepped regions and the top region as the highest joint FIG. 1. A typical step structure formed during growth along
region of two step regions. The kinetics of adatoms in eaclpositive slopev andv’ are velocities of the steps.
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velocity difference will be proportional t@j(x,t)/dx. In-
cluding this dynamical effect, the expression for the current
becomes

()= —_MmIF(Pg—Py)
T T M) T mla ) .
AF Im| 2
——4 2

4 7\ @+ m)gt+may )

Next, we argue that every downward hop introduces
height-height correlation; hence it will give rise to all the
stabilizing terms in a growth equation. Under the tilt inde-
pendent current conditions, the lowest of such terms is
#°h/9x3. Thus the current on the stepped surface will be
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FIG. 2. Morphology of the surface in (A1) dimensions for an
unstable growth after fOayers. Parametes is 0.6.

- nmF(Ps—Py) o N
X) = nk—;
It 2(1+|m))(I; 4 |mja™h ax3 under this condition and is replaced byt ldependence. This
R ) dependence has not been previously mentioned in any of the
njm|F |m| simulations of growth although similar models have been
g % (1+|m)(1; *+|mja~ D) 3 studied in the past7,11]. We have verified shifting of the
C

base region in time for various SE barriers by inspecting

For small slopes, the above current generates a growth equ({.;l_gnsec_utive time profile§ of interfaces created_ in computer
tion in the moving frame with average growth rate simulations of a (¥ 1)-dimensional model described below.

From the model simulations, we find that the base region is

ah(x,t) F(Pg—Ppl. d*h FI2 52 [gh\?2 relevant for uphill current, while it is irrelevant for zero or
i 5 —+ e —2<& downh|l_l currentj, . . .
20 28 In this model, on a one-dimensional substrate, adatoms
2h are rained randomly. An atom with one or more nn is incor-
—k—+ 7(x,1), (4  Porated in the crystal. An adatom with zero nn is allowed to
ax* hop n number of times at the most. If it acquires a nn, then

no further hops are allowed. If the number of hops are ex-
wheren(x,t) is the Gaussian noise in the deposition with thehausted, it is incorporated at the final site aftehops. A
property (n(x',t")n(x,1))=8(x"—x)5(t'—t). For P,  parametemp is introduced, such thgt>0.5 corresponds to
=Py, current is tilt free, and the corresponding equation hashe positive SE barriep=1 is the case of the infinite SE

the Lai—Das Sarma-Villaifi3,10] form.

barrier. This model is similar to that used by Kr{il] in

Now we consider the kinetics of adatoms on the top anctonnection with the effect of a detailed balance on the asym-
base regions over time scales much smaller than. For  metric term in the growth equation. The model mimics the
the base and top regions, by definition the tilt dependentealistic growth in (1 1) dimension at low temperature and
current is zero. On the top region, downward hops from twowithout desorption. We have measurdah;) correlations
edges is the only process, leading to the growth ternfor various values op and used the first zero crossing as the
ka*h/ax3. The asymmetric term is absent. On the base remeasure of the size of the mound. Figure 2 shows the well
gion only in-plane hops are allowed. Thus, only the Poissordeveloped mounds with=0.6. Note the deep ridges formed
growth is expected. These arguments indicate that for smatlue to high step heights of the steps forming the ridges.
time scales, three distinct regions exist on the interface. These ridges are the discontinuities of the base region. The

In order that this distinction is relevant to growth, it is mound growth in this case is then decided by the transport of
necessary that the regions remain well defined over timadatoms across the ridges. We estimate the lateral mound
scales of the order afy,, or more.r),_ is the minimum time  growth rate by appealing to the diffusional kinetics of atoms.
dt in the growth equatioitd), as it denotes the average time The growth proceeds by expansion of a larger mound at the
between the height fluctuations at a given site. Accordingly, aost of a smaller ong7]. Thus the ridge moves laterally in
base region of widtlp will be irrelevant in growth dynamics the direction of the expansion of the larger mound. A smaller
if it shifts on an average by an amountlwbr more in time  mound generally makes a smaller angle with respect to the
vL - Under this condition, the growth equation for steppedsubstrate. Thus, relatively longer terraces are present on this
region is valid over the entire substrate. On the other hand imound. The diffusional addition to the ridges is mainly from
is relevant and appears as a discontinuity if the shift ighese terraces, resulting in the shift of the ridge in the direc-
smaller tharb. The discontinuity manifests as a singular re-tion shrinking the smaller mound. Thus, we assume that ada-
gion in the growth, leading to sharp ridges separating adjatoms are added from the smaller mound, diffusionally. The
cent mounds$7]. The power law dependence of growth fails diffusional rate of displacementéd = Dé’zt‘l’zdt on a plane
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FIG. 3. Time evolution of lateral growth in (£1) dimensions. FIG. 4. Time evolution of lateral growth in (1) dimensions.

The values of parameterare 0.5, 0.6, 0.7, and 0.8, respectively, for The values of parametgr are 0.35, 0.6, and 0.7, respectively, for
the curves from top to bottom in the figure. The substrate size ishe curves from top to bottom in the figure. The substrate size is
L=10000. 300x 300 for the simulation.

surface in timedt. However, for a ridge to move laterally, it

must be filled at least up to the first step height. For sharglown hill j;. A slower rate for mound growth is expected in
ridges as in Fig. 2, the step height of a ridge may be taken t62+1) dimensions for the following reason. A given mound
be ~w, the rms height fluctuatiofwidth). Hence, the dis- is surrounded by four or more mounds. The probability that
placement for a ridge will bedlr:pDé’ztfl’Zawfldt, such a mound happens to be the smallest among the sur-
where,p is the relative fraction of adatoms crossing the steprounding ones, including itself, is very small. A given mound
edge anda is the lattice constant. Fav~t?, the growth of may be reduced in one direction, but it may increase in other

mounds is proportional to In direction owing to a smaller mound there. Thus, instead of
In Fig. 3, a plot of mound size vs time on a semilog scaleconsumption, shift of mounds is more likely on a two-
clearly shows that fop>0.5, i.e., for the uphill current,, dimensional substrate. In order to find the time dependence

the mounds growth is I Also shown is the case fop  of the mound growth in (2 1) dimensions, we have used
=0.5. j;=0 for this case. We plot the length correspondingthe same model described above, except that the rules apply
to the first maximum in height-height correlations for thisin two directions on a square lattice. In addition, we have
case. The curve on the semilog plot is the exponential showincluded edge diffusion witimo edge barrierslt is observed
ing a power law dependence. Correlation lengtht'* in  that edge diffusion suffices to induce uphill current so that
this case. In fact it can be shov8] that the corresponding even if the diffusion of single adatoms is unbiased, mound
equation describes Das Sarma-—Tambordd&a model to  formation is observed. In the absence of edge diffusion, but
which the tilt independent growth equation reduces for largevith unbiased single adatom diffusion, an EW-type growth is
slopes. Further, fop<<0.5, asymptotically, the EW growth is obtained[14]. A noise reduction technigué.5] is employed
recovered. Thus a single growth equation describes thwith a reduction factor of up to 5, wherever needed. The
growth over an entire substrate for zero and down jhilllf growth of the mound size is monitored in the same way as
the SE barrier is small or uphijl is small, power law growth  for the (1+1) dimensions, using zero crossing for the cor-
may be observed as a transient beforedapendence sets in. relations(h;h;). Figure 4 shows the plot of the mound size
In the present model dissociation from steps is not include@s a function of time on semilog plot. Clearly, after an initial
so that the detailed balance is not followed. If this is includedgrowth like Int, the curve tends to saturation, confirming the
and the current is still uphill, then independence continues slower growth rate. By varying parametpr a condition
for growth in (1+1) dimension. This also explains the be- close to the tilt independent current is obtained. The growth
havior under an infinite SE barrier of growfi3] where in that case follows'* power law. From the arguments lead-
mounds do not grow laterally beyomg. In this case, in the ing to Eq.(4), in (2+1) dimensions, we find that the asym-
absence of downward hops, the base region remains fixedetric term will be ineffective if the step edge tension is
spatially at all times leading to Poisson growth. lower so that the step morphology is wavy or fingered. This
Above arguments are true in any dimension. In+-(2) is so because the terrace size can be reduced by step move-
dimensions, mound formation is observed experimentally agnents in the orthogonal directions as well. Thus only the
well as in simulation$1,11]. Various predictions are referred V*h term contributes, leading t@#=1/4 andz=4 in (2
to in the Introduction regarding the time evolution of the +1) dimensions. Clearly, this observation suggests that in
mounds. The present analysis suggests that thedépen- experimental growth, if the SE barrier is very smébut
dence in (X 1) dimensions is thaipper limit for lateral  nonzerg, at low temperature, the growth rate of mounds can
development of the mounds in §21) dimensions for uphill bet*in the transient region. If the edge tension is high so
jt» while power law dependence is possible only for zero othat steps are straight and less wavy, the asymmetric term
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can contribute with3 and z, characteristics of a Lai—Das than 7y, . The effect is distinctly observable under uphill
Sarma like equatiofil0] in the transition region. current on the tilted substrate leading to mounds separated by
In conclusion, we have shown that the growth from aridges. The kinetics across the mounds suggest aépen-
vapor on a surface proceeds via, in principle, a heterogedence in (1 1) dimensions, which is verifiable in a suitable
neous dynamics. The stepped, base, and top regions on thedel. A slower growth is predicted in (21) dimensions,
surface allow different growth dynamics. As a result the spawhich is also observed in a model simulation. Power law
tial scalability breaks down over time scales much smalledependence for mounds is only for zero or downhill current.
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