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Mounding instability and incoherent surface kinetics
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Mounding instability in a conserved growth from vapor is analyzed within the framework of adatom kinetics
on the growing surface. The analysis shows that depending on the local structure of the surface, kinetics of
adatoms may vary, leading to disjoint regions in the sense of a continuum description. This is manifested
particularly under the conditions of instability. Mounds grow on these disjoint regions and their lateral growth
is governed by the flux of adatoms hopping across the steps in the downward direction. Asymptotically lnt
dependence is expected in (111) dimensions. Simulation results confirm the prediction. Growth in (211)
dimensions is also discussed.
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Mounding instability was experimentally observed a
proposed by Johnsonet al. @1# during the growth of GaAs on
~001! GaAs substrate. Initially, activation differenc
@Schwoebel-Ehrlich~SE! barrier# @2# between adatoms hop
ping on the plane and the one crossing the step edge
considered responsible@3#. Later it was shown that edge dif
fusion can also lead to similar effects@4#. The necessary
condition for this instability is to have currentj t , uphill on
the tilted substrate@5#. One of the issues related to th
growth of mounds has been the temporal dependence o
mound growth. Based on various forms of continuum eq
tions the lateral growth is expected to have a time dep
dence;ts, wheres takes values from 0.0 to 1/4@6#. Simi-
larly, the width of the interface is predicted to follow th
power lawtb with b varying from 1/3 onwards@6#. All the
simulations that do not allow step dissociation invariab
find that, for uphill j t , steepening of mound sides occu
after some time, depending upon the strength of thej t . The
steepening sides finally form sharp ridges in the interfa
The time when it just begins is referred to as the onse
instability. Most of the theoretical treatments and simulatio
do not extend to the region of instability. However, su
instability is the asymptotic behavior under uphillj t . In the
growth equation approach, presence of these ridges is
sidered as singularities and it was proposed that a nonl
equation may reconcile the presence of ridges with c
tinuum description@7#. The predictions of growth equation
@6# are based on the assumption that the underlying c
served growth equation, describing nonequilibrium grow
is valid over the entire substrate. In the following we sho
that for growth with uphill current, discontinuities appear
the substrate as a consequence of different kinetics in di
ent regions, leading to different growth equations there. I
shown that the power law dependence is possible only
downhill or zero tilt dependent current. Thus above pred
tions @6# considered at zero tilt dependent current, but not
an uphill current. We argue this by establishing a corresp
dence between different kinetic processes on the inter
and the terms in a growth equation. We consider a step
region, as in Fig. 1, base region, as the adjoining bottom
two stepped regions and the top region as the highest
region of two step regions. The kinetics of adatoms in e
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of these regions show that these regions offer differ
growth equations over time scales much smaller thantML ,
the time for 1 ML deposition.

We consider growth on a one-dimensional substrate. F
ure 1 shows the stepped region under consideration. Gro
proceeds through randomly falling adatoms on the surfa
which relax by diffusing on the stepped terraces. Adato
with zero nearest neighbors~nn! are mobile while those with
more than zero nn will have negligible mobility. Furthe
desorption and dissociation from the steps is also neglig
at low temperature. Under the conserved growth condition
is possible to write formally the growth equation in the for
] th(x,t)5“• j (x,t)1F, whereF is incident flux,h(x,t) is
height function andj (x,t) is particle current. An uphill cur-
rent j t indicates instability while the downhill current indi
cates the stable Edward-Wilkinson~EW! @8# type growth@5#.
Let l c be the average length traveled by an adatom be
getting attached to another adatom or step. The densit
steps can be expressed asumu/(11umu), wherem is the local
slope. LetPA and PB be the relative probabilities for hop
ping across the sitesA andB in Fig. 1. By considering cur-
rent due to the downward hops and that due to the in-pl
hops separately, one can show that the resultant nonequ
rium current is given by@9#

j s5
n̂umuF~PB2PA!

2~11umu!~ l c
211umua21!

, ~1!

wheren̂ denotes positivex direction. The presence ofl c
21 in

the denominator accounts for the nucleation effect on lar
terraces. In this expression, the local terrace width is (l c

21

1a21umu)21. However, due to the relative velocity betwee
two adjacent terraces, the local terrace width changes.

FIG. 1. A typical step structure formed during growth alon
positive slope.v andv8 are velocities of the steps.
©2003 The American Physical Society01-1
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velocity difference will be proportional to] j (x,t)/]x. In-
cluding this dynamical effect, the expression for the curr
becomes

j ~x!5
n̂umuF~PB2PA!

2~11umu!~ l c
211umua21!

2
n̂F

4
]xS umu

~11umu!~ l c
211umua21!

D 2

. ~2!

Next, we argue that every downward hop introduc
height-height correlation; hence it will give rise to all th
stabilizing terms in a growth equation. Under the tilt ind
pendent current conditions, the lowest of such terms
]3h/]x3. Thus the current on the stepped surface will be

j ~x!5
n̂umuF~PB2PA!

2~11umu!~ l c
211umua21!

1n̂k
]3h

]x3

2
n̂umuF

4
]xS umu

~11umu!~ l c
211umua21!

D 2

. ~3!

For small slopes, the above current generates a growth e
tion in the moving frame with average growth rate

]h~x,t !

]t
52

F~PB2PA!l c

2

]2h

]x2
1

Fl c
2

4

]2

]x2 S ]h

]xD 2

2k
]4h

]x4
1h~x,t !, ~4!

whereh(x,t) is the Gaussian noise in the deposition with t
property ^h(x8,t8)h(x,t)&5d(x82x)d(t82t). For PA
5PB , current is tilt free, and the corresponding equation
the Lai–Das Sarma–Villain@3,10# form.

Now we consider the kinetics of adatoms on the top a
base regions over time scales much smaller thantML . For
the base and top regions, by definition the tilt depend
current is zero. On the top region, downward hops from t
edges is the only process, leading to the growth te
k]3h/]x3. The asymmetric term is absent. On the base
gion only in-plane hops are allowed. Thus, only the Pois
growth is expected. These arguments indicate that for sm
time scales, three distinct regions exist on the interface.

In order that this distinction is relevant to growth, it
necessary that the regions remain well defined over t
scales of the order oftML or more.tML is the minimum time
dt in the growth equation~4!, as it denotes the average tim
between the height fluctuations at a given site. Accordingl
base region of widthb will be irrelevant in growth dynamics
if it shifts on an average by an amount ofb or more in time
tML . Under this condition, the growth equation for stepp
region is valid over the entire substrate. On the other han
is relevant and appears as a discontinuity if the shift
smaller thanb. The discontinuity manifests as a singular r
gion in the growth, leading to sharp ridges separating a
cent mounds@7#. The power law dependence of growth fa
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under this condition and is replaced by lnt dependence. This
dependence has not been previously mentioned in any o
simulations of growth although similar models have be
studied in the past@7,11#. We have verified shifting of the
base region in time for various SE barriers by inspect
consecutive time profiles of interfaces created in compu
simulations of a (111)-dimensional model described below
From the model simulations, we find that the base region
relevant for uphill current, while it is irrelevant for zero o
downhill currentj t .

In this model, on a one-dimensional substrate, adato
are rained randomly. An atom with one or more nn is inc
porated in the crystal. An adatom with zero nn is allowed
hop n number of times at the most. If it acquires a nn, th
no further hops are allowed. If the number of hops are
hausted, it is incorporated at the final site aftern hops. A
parameterp is introduced, such thatp.0.5 corresponds to
the positive SE barrier.p51 is the case of the infinite SE
barrier. This model is similar to that used by Krug@11# in
connection with the effect of a detailed balance on the as
metric term in the growth equation. The model mimics t
realistic growth in (111) dimension at low temperature an
without desorption. We have measured^hihj& correlations
for various values ofp and used the first zero crossing as t
measure of the size of the mound. Figure 2 shows the w
developed mounds withp50.6. Note the deep ridges forme
due to high step heights of the steps forming the ridg
These ridges are the discontinuities of the base region.
mound growth in this case is then decided by the transpor
adatoms across the ridges. We estimate the lateral mo
growth rate by appealing to the diffusional kinetics of atom
The growth proceeds by expansion of a larger mound at
cost of a smaller one@7#. Thus the ridge moves laterally in
the direction of the expansion of the larger mound. A sma
mound generally makes a smaller angle with respect to
substrate. Thus, relatively longer terraces are present on
mound. The diffusional addition to the ridges is mainly fro
these terraces, resulting in the shift of the ridge in the dir
tion shrinking the smaller mound. Thus, we assume that a
toms are added from the smaller mound, diffusionally. T
diffusional rate of displacement isdl5Ds

1/2t21/2dt on a plane

FIG. 2. Morphology of the surface in (111) dimensions for an
unstable growth after 106 layers. Parameterp is 0.6.
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surface in timedt. However, for a ridge to move laterally,
must be filled at least up to the first step height. For sh
ridges as in Fig. 2, the step height of a ridge may be take
be ;w, the rms height fluctuation~width!. Hence, the dis-
placement for a ridge will bedlr5pDs

1/2t21/2aw21dt,
where,p is the relative fraction of adatoms crossing the s
edge anda is the lattice constant. Forw;t1/2, the growth of
mounds is proportional to lnt.

In Fig. 3, a plot of mound size vs time on a semilog sc
clearly shows that forp.0.5, i.e., for the uphill currentj t ,
the mounds growth is lnt. Also shown is the case forp
50.5. j t50 for this case. We plot the length correspondi
to the first maximum in height-height correlations for th
case. The curve on the semilog plot is the exponential sh
ing a power law dependence. Correlation lengthj;t1/4 in
this case. In fact it can be shown@9# that the corresponding
equation describes Das Sarma–Tamborenea@12# model to
which the tilt independent growth equation reduces for la
slopes. Further, forp,0.5, asymptotically, the EW growth i
recovered. Thus a single growth equation describes
growth over an entire substrate for zero and down hillj t . If
the SE barrier is small or uphillj t is small, power law growth
may be observed as a transient before lnt dependence sets in
In the present model dissociation from steps is not inclu
so that the detailed balance is not followed. If this is includ
and the current is still uphill, then lnt dependence continue
for growth in (111) dimension. This also explains the b
havior under an infinite SE barrier of growth@13# where
mounds do not grow laterally beyondl c . In this case, in the
absence of downward hops, the base region remains fi
spatially at all times leading to Poisson growth.

Above arguments are true in any dimension. In (211)
dimensions, mound formation is observed experimentally
well as in simulations@1,11#. Various predictions are referre
to in the Introduction regarding the time evolution of th
mounds. The present analysis suggests that the lnt depen-
dence in (111) dimensions is theupper limit for lateral
development of the mounds in (211) dimensions for uphill
j t , while power law dependence is possible only for zero

FIG. 3. Time evolution of lateral growth in (111) dimensions.
The values of parameterp are 0.5, 0.6, 0.7, and 0.8, respectively, f
the curves from top to bottom in the figure. The substrate siz
L510 000.
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down hill j t . A slower rate for mound growth is expected
(211) dimensions for the following reason. A given moun
is surrounded by four or more mounds. The probability th
such a mound happens to be the smallest among the
rounding ones, including itself, is very small. A given moun
may be reduced in one direction, but it may increase in ot
direction owing to a smaller mound there. Thus, instead
consumption, shift of mounds is more likely on a tw
dimensional substrate. In order to find the time depende
of the mound growth in (211) dimensions, we have use
the same model described above, except that the rules a
in two directions on a square lattice. In addition, we ha
included edge diffusion withno edge barriers. It is observed
that edge diffusion suffices to induce uphill current so th
even if the diffusion of single adatoms is unbiased, mou
formation is observed. In the absence of edge diffusion,
with unbiased single adatom diffusion, an EW-type growth
obtained@14#. A noise reduction technique@15# is employed
with a reduction factor of up to 5, wherever needed. T
growth of the mound size is monitored in the same way
for the (111) dimensions, using zero crossing for the co
relations^hihj&. Figure 4 shows the plot of the mound siz
as a function of time on semilog plot. Clearly, after an init
growth like lnt, the curve tends to saturation, confirming t
slower growth rate. By varying parameterp, a condition
close to the tilt independent current is obtained. The grow
in that case followst1/4 power law. From the arguments lead
ing to Eq.~4!, in (211) dimensions, we find that the asym
metric term will be ineffective if the step edge tension
lower so that the step morphology is wavy or fingered. T
is so because the terrace size can be reduced by step m
ments in the orthogonal directions as well. Thus only t
¹4h term contributes, leading tob51/4 and z54 in (2
11) dimensions. Clearly, this observation suggests tha
experimental growth, if the SE barrier is very small~but
nonzero!, at low temperature, the growth rate of mounds c
be t1/4 in the transient region. If the edge tension is high
that steps are straight and less wavy, the asymmetric t

is

FIG. 4. Time evolution of lateral growth in (211) dimensions.
The values of parameterp are 0.35, 0.6, and 0.7, respectively, fo
the curves from top to bottom in the figure. The substrate siz
3003300 for the simulation.
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can contribute withb and z, characteristics of a Lai–Da
Sarma like equation@10# in the transition region.

In conclusion, we have shown that the growth from
vapor on a surface proceeds via, in principle, a hetero
neous dynamics. The stepped, base, and top regions o
surface allow different growth dynamics. As a result the s
tial scalability breaks down over time scales much sma
o,

s

e

01060
e-
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than tML . The effect is distinctly observable under uph
current on the tilted substrate leading to mounds separate
ridges. The kinetics across the mounds suggest a lnt depen-
dence in (111) dimensions, which is verifiable in a suitab
model. A slower growth is predicted in (211) dimensions,
which is also observed in a model simulation. Power l
dependence for mounds is only for zero or downhill curre
.S.

ett.
. E
@1# M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J. Sudijon
L.M. Sander, and B.G. Orr, Phys. Rev. Lett.72, 116 ~1994!.

@2# G. Ehrlich and F. Hudda, J. Chem. Phys.44, 1039~1966!; R.L.
Schwoebel, J. Appl. Phys.40, 614 ~1969!.

@3# J. Villain, J. Phys. I1, 19 ~1991!.
@4# O. Pierre-Louis, M.R. D’Orsogna, and T.L. Einstein, Phy

Rev. Lett.82, 3661~1999!; M.V. RamanMurty and B.H. Coo-
per, ibid. 83, 352 ~1999!.

@5# J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lett.70, 3271
~1993!.

@6# L. Golubovic, Phys. Rev. Lett.78, 90 ~1997!; M. Siegert and
M. Plischke,ibid. 73, 1517~1994!.

@7# P. Politi and J. Villain, Phys. Rev. B54, 5114~1996!.
@8# S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, S
.

r.

A 381, 17 ~1982!.
@9# S.V. Ghaisas, e-print cond-mat/0202210.

@10# Z.W. Lai and S. Das Sarma, Phys. Rev. Lett.66, 2348~1991!.
@11# J. Krug, Adv. Phys.46, 141 ~1997!.
@12# S. Das Sarma and P. Tamborenea, Phys. Rev. Lett.66, 325

~1991!.
@13# P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, and A

Arrott, Surf. Sci.216, 222 ~1989!.
@14# P. Punyindu, Z. Toroczkai, and S. Das Sarma, Surf. Sci. L

457, L369 ~2000!; P. Punyindu and S. Das Sarma, Phys. Rev
57, R4863~1998!.

@15# J. Kertesz, D.E. Wolf, J. Phys. A21, 747 ~1988!; D.E. Wolf
and J. Kertesz, Europhys. Lett.4, 651 ~1987!.
1-4


